If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2=361
We move all terms to the left:
z^2-(361)=0
a = 1; b = 0; c = -361;
Δ = b2-4ac
Δ = 02-4·1·(-361)
Δ = 1444
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1444}=38$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-38}{2*1}=\frac{-38}{2} =-19 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+38}{2*1}=\frac{38}{2} =19 $
| 0.13x−0.21x=-0.8 | | 2y+41=-3(y-2) | | x=-10+2-3-3 | | −7=−11+v/5 | | 4r−7=−35 | | 5(2m+3)-4m=8m+27m | | 16+2(x+5)=0 | | t^2-2t-9=0 | | 6.2h+6-1.4h=4.8h+5 | | −6k−13=83 | | 15f+120=450 | | 4.9x^2+7.7x+1.8=0 | | a=5+0.5A | | 10x^2-169x+2=0 | | 2x+20+x+10=90 | | 71-3.5h=50 | | -0.5x+x=1 | | 4(x-1)^2=-200 | | 0.5x+x=1 | | X^2×2x^2=147 | | 20(1-y)+10y=12 | | 4(x-1)^2+200=0 | | 24=x|-6 | | 3x+2=5x-78 | | 2-2y+1y=12 | | 4-3y/6y-2=-3/5 | | 4m-6.5=2 | | 12x^2-156x+360=0 | | 3n+28=10n-30 | | 3(3)+2y+17=0 | | n=123n+12 | | 7x-61=5x-13 |